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Abstract 

Ship measurements collected over the northeast Pacific along transects between the 

port of Los Angeles (33.7˚N, 118.2˚W) and Honolulu (21.3˚N, 157.8˚W) during May to 

August 2013 were utilized to investigate the co-variability between marine low cloud 

microphysical and aerosol properties. Ship-based retrievals of cloud optical depth () from a 

sun-photometer and liquid water path (LWP) from a microwave radiometer were combined to 

derive cloud droplet number concentration Nd or compute a cloud-aerosol-interaction (ACI) 

metric defined as                         , with CCN denoting the cloud 

condensation nuclei concentration measured at 0.4% (CCN0.4) and 0.3% (CCN0.3) 

supersaturation. Analysis of CCN0.4, accumulation mode aerosol concentration (Na), and 

extinction coefficient (ext) indicates that Na and ext can be used as CCN0.4 proxies for 

estimating ACI. ACICCN derived from 10-min averaged Nd and CCN0.4 and CCN0.3, and 

CCN0.4 regressions using Na and ext, produce high ACICCN: near 1.0, that is, a fractional 

change in aerosols is associated with an equivalent fractional change in Nd. ACICCN computed 

in deep boundary layers was small (ACICCN =0.60), indicating that surface aerosol 

measurements inadequately represent the aerosol variability below clouds. 

Satellite cloud retrievals from MODIS and GOES-15 data were compared against 

ship-based retrievals and further analyzed to compute a satellite-based ACICCN. Satellite data 

correlated well with their ship-based counterparts with linear correlation coefficients equal to 

or greater than 0.78. Combined satellite Nd and ship-based CCN0.4 and Na yielded a maximum 

ACICCN =0.88-0.92, a value slightly less than the ship-based ACICCN, but still consistent with 

aircraft-based studies in the eastern Pacific. 



1. Introduction

The aerosol indirect effect (AIE) in low marine clouds remains a central source of 

uncertainty in climate models, hampering our ability to accurately quantify anthropogenic 

radiative forcing [e.g. Rosenfeld et al., 2014, Carslaw et al., 2013, and references therein]. 

Reduction of AIE inter-model spread thus requires accurate measurements of cloud and 

aerosol properties that can guide future improvements in model parameterizations. However, 

the use of AIE estimates from observations is challenging because different platforms can 

yield a broad range of AIE values [e.g. McComiskey and Feingold, 2008]. While this 

variability can be partially due to the unique atmospheric characteristics of the cloud regimes 

sampled (e.g. maritime vs. continental), less attention has been paid to the physical 

representativeness of the observations. In fact, even when the measurements are accurate 

within some tolerable errors, different aerosol measurements might not yield the same co-

variability with the cloud microphysics. Since the property that is most directly linked to 

cloud droplet formation is ultimately cloud condensation nuclei (CCN) concentration, the 

suitability of other aerosol measurements depends on how well they can reproduce CCN 

concentration variability. For instance, Shinozuka et al. [2015] show a close correlation 

between CCN concentration and aerosol extinction coefficient over the oceans, with 

fractional changes in extinction yielding smaller fractional changes in CCN concentration. 

Similarly, attempts have been made to use aerosol optical depth (AOD) as a proxy for CCN 

concentration [e.g. Andreae, 2009]. Although CCN concentration and AOD correlate well 

when considering a broad range of aerosol concentrations, the relationship is poorly 

characterized in pristine maritime environments [e.g. Fig. 1 in Andreae, 2009], likely because 

of a few large aerosol particles that contribute little to CCN concentration but dominate the 

AOD. This is particularly troublesome as it is common to use satellite-based AOD for 

evaluating AIE model performance [e.g. Quaas et al., 2009]. Interestingly, Painemal and 



Zuidema [2010] and Painemal et al. [2015] show that the combined use of satellite cloud 

microphysics and in-situ CCN concentration can produce robust correlations in cloud-topped 

marine boundary layers. Nevertheless, consistency between ground-based and satellite-based 

remote sensing estimates to understand discrepancies in AIE values has not been investigated 

with the necessary detail. 

For better observational quantification of AIE, it would be desirable to adopt a 

regional focus and rely on the redundancy and consistency of both instruments and retrievals. 

By adopting a regional focus, one can better isolate the meteorological processes and aerosol 

chemical properties that dictate changes in the aerosol-cloud co-variability. Redundancy, on 

the other hand, will help determine the robustness of the observations and help evaluate the 

advantages of different aerosol and cloud proxies. Although these requirements are met by 

the multi-observational platforms deployed by the Atmospheric Radiation Measurement 

(ARM) program [e.g. Miller et al., 2016], long-term observations over marine environments 

have been elusive until a recent ARM field campaign over the Northeast Pacific: the Marine 

ARM GPCI (Global Energy and Water Cycle Experiment –GEWEX- Cloud System Study –

GCSS- Pacific Cross-section Intercomparison) Investigation of Clouds (MAGIC) campaign 

[Lewis and Teixeira, 2015; Zhou et al., 2015]. MAGIC deployed the second ARM mobile 

facility (AMF2) on board a cargo ship, the Horizon Spirit, that sailed between the ports of 

Los Angeles, California (33.7˚N, 118.2˚W) and Honolulu, Hawaii (21.3˚N, 157.8˚W) during 

two observation periods: September (2012)-January (2013) and May-September of 2013. 

AMF2 included a suite of aerosol probes that measured surface CCN concentration, aerosol 

size distribution, and aerosol light scattering; radiometric instrumentation for cloud retrievals; 

a high spectral resolution lidar (HSRL); and Ka-band and W-band radars [e.g. Kollias et al., 

2016]. 



This work builds on a recent article [Painemal et al., 2015 P15] that describes 

seasonal changes and synoptic patterns that influence aerosol and cloud microphysics 

variability during MAGIC. Here, we follow a more specific focus by centering our efforts on 

quantifying the co-variability and the cloud-aerosol interaction metric              

         between different aerosols properties () and cloud droplet number concentration 

(Nd) by utilizing MAGIC in-situ and remote sensors as well as satellite observations during 

Spring-Summer of 2013. 

2. Dataset

We make extensive use of numerous MAGIC observations, which encompass 

standard meteorological observations and radiosondes, along with specific instrumentation 

unique to this deployment, which included passive and active remote sensors. We also 

complemented the ship data with retrievals from two satellite sensors, the Fifteenth 

Geostationary Operational Environmental Satellite (GOES-15) imager and the MODerate-

resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites. The 

datasets are described below and summarized in Table 1. 

2.1. Ship-based aerosol observations: 

Cloud condensation nuclei concentrations were measured with a CCN counter 

[Roberts and Nenes, 2005] manufactured by Droplet Measurements Technology (DMT). The 

CCN counter varies supersaturations from 0% to 0.6% every 10-min. CCN concentrations at 

0.4% were primarily used in this study, with additional analyses of 0.3% and 0.2% 

supersaturation CCN. These supersaturation values are consistent with the 0.3 % used by 

Hegg et al. [2012], based on aircraft observations in California coastal stratocumulus clouds 

reported by Hudson et al. [2010]. Dry aerosol size distributions were measured with the DMT 

Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), which is a laser-based optical 



scattering, aerosol particle spectrometer that sizes aerosol particles with optical diameter 

between 60 and 1000 nm in 100 equally-spaced logarithmic bins by the amount of light they 

scatter into given angular regions from a 1054-nm laser [Cai et al., 2008]. Aerosol light 

scattering was measured at three wavelengths: 450, 550, and 750 nm, with a TSI Integrating 

Nephelometer model 3563 [Anderson et al., 1996] that alternately sampled particles with 

aerodynamic diameters less than 1 and 10 m. Aerosol light absorption was measured by a 

particle soot absorption photometer (PSAP, manufactured by Radiance Research, Inc.) at 

470, 522, and 660 nm based on optical transmittance measurements through a glass/cellulose 

filter over time as particles are deposited. The data, obtained for aerodynamic diameters less 

than 1 and 10 m, are corrected for scattering and filter loading as described in Bond et al. 

[1999]. We adjusted the PSAP absorption to the nephelometer wavelength of 550 nm using 

the Ångström exponent determined from measurements at 470 and 660 nm, that is, assuming 

linearity between the logarithm of the absorption coefficient and logarithm of the wavelength. 

The University of Wisconsin High Spectral Resolution Lidar (HSRL, Eloranta, 2005) 

provided information about the vertical distribution of aerosols and cloud boundary detection. 

The instrument operates at a 532 nm wavelength, with a field-of-view of 100 rad and a 

range resolution of 7.5 m. Here we utilize the particle backscatter cross-section because it is a 

robust retrieval and not strongly affected by calibration issues and signal noise. 

2.2. Ship-based cloud observations 

Liquid water path was retrieved from a 3-channel microwave radiometer (MWR), 

with a 3˚ field-of-view and three channels at 23.83, 30, and 89 GHz. with the last providing 

further constraint that enables retrieving more accurate LWP for thin clouds. These retrievals, 

based on iterative radiative calculations under an optimal estimation framework [Cadeddu et 

al., 2013], have been recently used for evaluating satellite microwave liquid water and water 



vapor paths [Painemal et al., 2016]. The effect of the ship motion was accounted for in the 

instrument calibration. Moreover, given the instrument’s relatively large field-of-view, and 

typical angular departures from zenith were less than 1 ˚ [Chiu et al., 2016], the ship motion 

effects in the MWR measurements are deemed small.   

Cloud base height was determined from a Vaisala CL31 laser ceilometer and the 

HSRL with vertical resolution of 7.5 m, using for the latter a particle backscatter cross-

section threshold of       m
-1

sr
-1

, as in Fielding et al. [2015]. Cloud frequency was defined

from the ceilometer as the ratio of the number of cloudy samples to the total. Cloud top 

height and precipitation detection were derived from a K-band radar as in Zhou et al. [2015] 

using a hydrometeor mask algorithm based on the methodology by Hildebrand and Sekhon 

[1974] for the determination of noise level. The K-band radar’s high temporal resolution of 

0.4 s oversampled the ship motion, allowing compensation of the motion effect by averaging 

the radar data to 4 s [Zhou et al., 2015]. A precipitation event is defined for times when an 

echo was detected in the lowest radar gate (~ 150 m). This definition encompasses both rain 

and drizzle events according to the definitions in Zhou et al. [2015]. The analysis was limited 

to samples in which the radar detected cloud top heights below 3 km, even though the 

frequency of occurrence of higher clouds is less than 4.1 % per month during the period of 

study. 

A narrow field-of-view (1.2˚) Cimel sun-photometer was utilized to retrieve cloud 

optical thickness () and effective radius (re), with optimal operation during May, June, and 

the first two transects of July. Unlike sun-photometers in the Aerosol Robotic Network 

(AERONET) that operate in the normal aerosol mode for retrieving aerosol optical depth, the 

one deployed in MAGIC ran in cloud mode, that is, viewing zenith. The analysis method, 

described in Chiu et al. [2010, 2012], uses zenith radiances at wavelengths of 440, 870 and 

1640 nm, and retrieves  and re through minimizing the errors between the observed 



radiances and a look-up table constructed using a plane-parallel radiative transfer model for 

different values of re and . The actual instrument pointing angle was geometrically derived 

using the ship navigation data [Chiu et al., 2016]. Assuming a cloud profile with a constant 

cloud droplet number concentration and linearly increasing effective radius with height, LWP 

can then be indirectly estimated as     
 

 
      , with w denoting the liquid water 

density. This assumption for the cloud vertical structure is supported by aircraft observations 

off the coast of California during the 2005 Marine Stratus/Stratocumulus Experiment 

(MASE) campaign [Wang et al., 2009]. Since independent LWP retrievals are available from 

MWR during MAGIC, we will evaluate the water content stratification assumption by 

comparing MWR LWP with its adiabatic counterpart in Section 3.   

2.3. Satellite cloud retrievals 

Standard satellite retrievals for MAGIC are described in P15 and briefly summarized 

here. Cloud property retrievals were derived from the GOES-15 imager and the MODIS on 

the Terra and Aqua satellites. Retrievals of , re, cloud temperature, and cloud cover were 

produced using algorithms designed for MODIS for the Clouds and Earth’s Radiant Energy 

System (CERES) project Edition-4 products [Minnis et al., 2010, 2011] and adapted to 

GOES-15 [Minnis et al., 2008]. Satellite LWP was computed as     
 

 
      . While 

good agreement between aircraft observations and MODIS and GOES are reported in Zheng 

et al. [2011] and Painemal et al. [2012] for the southeast Pacific, we will further extend the 

comparison with the use of ship-based observations. 



3. Adiabaticity and Nd calculation

One basic assumption in estimating both Nd and LWP from visible/near-infrared ship 

and satellite-based retrievals is that the cloud liquid water content linearly increases with 

height. We tested this assumption by comparing the observed LWP (microwave) with its 

adiabatic counterpart (LWPad). Following Albrecht et al. [1990], LWPad was calculated as: 

      
  
  

    
   

 
                    

where a and Γad are the mean in-cloud air density and adiabatic lapse rate, respectively, and 

Z is the cloud thickness. Equation (1) is obtained by vertically integrating the adiabatic 

liquid water content, which is in turn a linear function of height. Temperature and pressure 

profiles for a and Γad calculations were taken from radiosondes matched to the HSRL cloud 

base and radar cloud top height pair to within 4 hours. A more restrictive temporal 

collocation criterion produced similar results but with a reduced number of matched samples. 

We selected the period June through July, 2013, when all the active sensors were operational 

and radiosondes, needed for computing Γad, were launched frequently. 

Figure 1 compares 10-minute averaged MWR-determined LWP and LWPad, from 

samples for boundary layer clouds only (top heights from the radar below 3 km) that are 

overcast (cloud frequency > 0.95) and have values between 15 and 250 g/m
2
 and precipitation

frequencies less than 0.1, to guarantee good quality MWR LWP. We note that at 15 g/m
2
 , the

LWP has an associated error of around 30%, which is a substantial improvement over the 

uncertainties for two-channel microwave radiometer LWP retrievals [Cadeddu et al., 2013]. 

The linear correlation of 0.85 with a small bias (11.8 g/m
2
), suggests a near-adiabatic

behavior. The 1:1 relationship between adiabatic and MWR LWP implies that the effect of 

cloud top entrainment is modest because the entrainment rate is small and/or the boundary 

layer turbulence is able to partially offset the cloud dilution. Mean LWP values of 83.3 and 



94.87 g/m
2
 from MWR and the adiabatic computation, respectively, are equivalent to a sub-

adiabatic fraction, defined as the ratio of the MWR LWP to LWPad, of 0.88. This sub-

adiabatic fraction is close to values reported by Zuidema et al. [2012] in the Southeast Pacific 

using an airborne microwave radiometer, where median fractions ranged between 0.86 and 

0.96. It is important to clarify that the adiabatic fraction is prone to uncertainties due to the 

combined errors in the radar and HSRL cloud boundary detections. For instance, we 

computed a Gaussian propagating error near 9.4 g/m
2
 for the mean LWPad caused solely by

limitations in the instruments’ vertical bin size resolution (7.5 and 30 m for the HSRL and 

radar, respectively). 

LWPad was also derived using the ceilometer cloud base height (not shown). This 

height averaged 47.5 m greater than that determined from the HSRL, even though the 

correlation between both estimates was high (r=0.99). As a result, the ceilometer adiabatic 

calculations averaged 29.6 g/m
2
 lower than those determined from the HSRL, implying an

implausible cloud super-adiabaticity. Given the HSRL’s good calibration and its high 

sensitivity to water droplets, the HSRL cloud base height detection was used, as it was 

deemed more reliable. 

3.1. Ship-based sun-photometer and microwave liquid water path consistency 

An advantage of the MAGIC campaign is that the availability of multi-instrument 

measurements allows testing of the physical consistency among different retrievals. Figure 2 

(black dots) compares 10-min averaged LWP derived from the MWR and the sun-photometer 

(sun-phot) LWP values for overcast samples with LWP less than 250 g/m
2
. These retrievals

have a positive linear correlation coefficient of 0.86, and a sun-phot LWP positive bias of 6.7 

g m
–2

, although the relationship is rather scattered. Since sun-phot LWP is a function of both

 and re, we isolate the effect of  on LWP by simply assuming a constant re at 9 m, 



consistent with typical values found over the study region [e.g. Table 1 in Lu et al., 2007], 

and recalculate the corresponding LWP. The comparison against MWR LWP (Figure 2, blue 

circles) shows a linear correlation coefficient of 0.82 and a sun-phot LWP positive bias of 1.2 

g m
–2

, which are comparable to those obtained when using sun-phot re. These results indicate

that the good correlation between sun-phot and MWR LWP is mainly due to sun-phot , with 

a small correlation improvement attributed to sun-phot re. We note that retrieving re from 

zenith radiance measurements is more challenging than retrieving , because the competing 

processes between radiance reduction from stronger absorption for larger droplets and 

radiance enhancement due to stronger forward scattering weakens the sensitivity of zenith 

radiance to cloud droplet size, and makes it harder to improve the re retrieval accuracy [Chiu 

et al., 2012]. Therefore, given the good agreement between the MWR LWP and sun-

photometer , they will be further applied to evaluate satellite observations, as well as for 

calculating Nd. 

3.2. Consistency of satellite and ship-based cloud retrievals 

Before determining consistency between ship and satellite-based aerosol-cloud 

interaction (ACI) metrics, we compare ship and satellite retrievals of cloud properties. 

Following the methodology in P15, we spatially average the satellite data to a common 20-

km resolution. This is intended to provide a more robust screening of partially cloudy scenes 

by utilizing only grids with cloud cover exceeding 95%. To be consistent with the satellite 

resolution, the ship-based data were hourly averaged (equivalent to a 20-40 km distance 

travelled by the ship). The LWP comparisons in Figure 3a and Table 2 show a linear 

correlation coefficient between MODIS (GOES-15) and the ship-based LWP data of 0.96 

(0.88) with a mean bias of 12 g/m
2
 (12.7 g/m

2
). A similar, positive bias was also reported

over the southeast Pacific by Painemal and Zuidema [2011] and Painemal et al. [2012]. Ship-



based and satellite  values are highly correlated (Figure 3b and Table 2), but with the 

satellite values negatively biased relative to the ship-based retrievals.

Given the near-adiabatic behavior of the clouds, we computed the ship-based Nd using 

the relationship in Painemal and Zuidema [2013]: 

                              
    

   

 
 

  

      
              

where obs is the observed stratification of the water content with height, and k is the ratio 

between the cube of the effective radius and the mean volume radius of the droplet size 

distribution. The units for obs and LWP in equation (2) are in [g/cm
4
] and [g/cm

2
],

respectively. Here we use a constant obs=1.4 g/m
3
/km and k=0.88, which are averaged

values derived from aircraft data over the Southeast Pacific during the VOCALS Regional 

Experiment [Painemal and Zuidema, 2011]. We reduce uncertainties in the retrievals due to 

thin clouds [e.g., Lim et al., 2016] by limiting the analysis to samples with LWP > 15 g/m
2
.

Following a similar methodology, described in Painemal and Zuidema [2011], 

satellite Nd is computed, assuming re in [cm], as: 

            
                      

    

     
           

We apply equations (2) and (3) to the ship-based and satellite data, respectively and 

compare ship-based and satellite Nd in Table 2 and Figure 3c. The GOES-15 and the ship-

based Nd retrievals have a statistically significant (at 99% confidence level according to a 

Student’s t test) high correlation (with linear correlation coefficient 0.78), especially 

considering the rather dissimilar equations used to compute Nd. Their scatterplot in Figure 3c 

shows a linear relationship on a log-log scale, and although the ship-based Nd tends to be 

larger than GOES-15, it is parallel to the 1-1 line (slope at 0.93), implying that these two 

quantities are only related by a constant factor. It is not possible to determine with the 



available measurements which Nd values better resemble the real ones. Moreover, despite the 

magnitude differences between ship-based and satellite data, their values are reasonable and 

consistent with the range of variability observed during aircraft field campaigns off the coast 

of California [e.g. Wang et al., 2009].  The disagreement in terms of the absolute magnitude 

of Nd appears to be associated with satellite underestimate relative to the sun-photometer 

retrieval. For instance, if one assumes that  is the only source of uncertainty, and GOES  is 

20.7% smaller than its ship-based counterpart (Table 2), it follows from equation (2) that 

GOES Nd is 50% smaller than the ship-based Nd, a result consistent with the actual mean bias. 

Even though the linear correlation coefficient between ship-based and MODIS Nd is small 

and negative (Table 2), the comparison is statistically insignificant because the statistics were 

calculated based on only 6 collocated samples. 

3.3. Error characterization 

Since the inter-comparison of several datasets and the ACI quantification entail the 

computation of slopes, we paid close attention to the calculation details. Instead of applying 

the standard least square regression, we used the York fit regression [York et al., 2004]. This 

iterative method provides symmetrical slopes in x and y and is less affected by outliers than 

the standard linear regression [Cantrell, 2008]. For calculating York-derived slopes, 

measurement/retrieval errors need to be specified, and are documented as follows. 

For estimating satellite Nd errors, we rely on comparisons over the southeast Pacific 

between 20-km averaged GOES-10 and aircraft microphysical observations. The root mean 

square error relative to the mean in Painemal et al. [2012] is approximately 30%, which is 

similar to the MODIS Gaussian error of 25% used in Painemal and Zuidema [2010]. For 

simplicity, we adopt a constant 30% error in Nd for both the GOES-15 and MODIS retrievals. 



We estimate the error in the ship-based Nd by adopting a Gaussian propagation error 

methodology. This requires the uncertainty characterization of each term of equation (2). 

Sun-photometer  errors were estimated by adding randomly generated perturbations to the 

measurements during the retrieving process [Chiu et al., 2012]. This procedure yielded an 

averaged error of 19% in both re and  during MAGIC. Nevertheless, this value likely 

underestimates the overall error associated with the use of a 1-D radiative transfer (plane-

parallel) model in the algorithm. An alternative error assessment was based on the 

comparison between synthetic cloud observations (from a large eddy simulation LES model 

with a horizontal resolution of 67 m) and plane-parallel cloud retrievals obtained from 

radiances simulated from the synthetic cloud scene [Chiu et al., 2012]. This comparison 

yielded a root mean square difference (RMSD) between the retrieved  and that from the LES 

close to 30%. We utilize this error in our calculation because it better reflects the challenges 

of retrieving  with the sun-photometer. 

Additionally, we use a 15% error in the microwave LWP, which is the upper error 

reported in Cadeddu et al. [2013] associated with the mean LWP during MAGIC.  For the 

parameter k in equation 2, we use an uncertainty of 20%, a value that represents the spread of 

the k distribution measured for the southeast Pacific stratocumulus clouds during VOCALS 

[Painemal and Zuidema, 2011]. The error in   was estimated at 20%, which is slightly 

smaller than the standard deviation of the LWP sub-adiabatic fraction during MAGIC (30%), 

yet the contribution of   to the overall error is modest. The combined Nd Gaussian 

propagating error, calculated as the square root of the sum of the squared errors under the 

assumption that the individual errors are uncorrelated, is 100%, a value that can be 

substantially reduced by applying 10-min data averaging. This arbitrary temporal average 

allows enough samples in the averaging to reduce measurement errors while preserving part 

of the observational variance. Assuming 7 to 10 samples every 10 minutes (dictated by the 



availability of MWR data), the 10-minute Nd error becomes:            . This error 

does not consider other sources of uncertainty such as the dissimilar instrument fields of view 

and the validity of equation (2). These factors appear to explain why previous studies that 

applied similar Nd equations reported a high variability, and at times very large Nd values not 

observed in in-situ aircraft data [e.g. Lim et al. 2016, McComiskey et al., 2009]. 

For aerosol properties, we also use the 10-min coefficient of variation as the fractional 

error. This yields mean errors of 11% for CCN concentration, 9% for UHSAS accumulation 

mode aerosol concentration (diameters between 0.1-1.0 m), and 25% for the dry 

nephelometer measurements, after applying the corrections described in section 4.3. 

4. Results

4.1. Satellite Nd and ship-based CCN 

ACI, defined as       
       

         
 and derived from satellite Nd and ship-based 

CCN, were examined in P15 for the full MAGIC deployment, with ACICCN around 0.9 for 

linear fits of the logarithm of the GOES-15 Nd vs the logarithm of the CCN concentration at 

0.4% supersaturation (CCN0.4). Here we perform a similar analysis for the May-August 2013 

sampling period (spring-summer). Figure 4 depicts the relationship between satellite Nd from 

MODIS (red) and GOES-15 (blue) and CCN0.4. The linear correlation coefficient of the 

logarithms of the two quantities is near 0.65 for both GOES-15 and MODIS. ACICCN for each 

satellite cloud dataset is 0.88±0.02 for GOES (ACIG) and 0.79± 0.09 for MODIS (ACIM). 

Even though satellite data offer a valuable alternative when other datasets are 

unavailable, the use of ship observations is more appropriate because they are 

spatial/temporally collocated with the CCN measurements, and the instruments sampled 

cloud structures that were much smaller than those observed by satellites.  



4.2. Ship-based computation of aerosol-cloud interactions 

Figure 5a shows the relationship between 10-minute averaged CCN0.4 and Nd using 

overcast samples, defined as those samples with ceilometer cloud frequency higher than 0.95 

(gray circles), to reduce the effect of 3D radiative effects near the cloud edges (at 

visible/near-infrared wavelengths) and clear-sky contamination in the retrievals. The red 

circles correspond to samples with precipitation occurrence frequency more than 10%. 

Additionally, the CCN0.3-Nd data for non-precipitating samples, are also depicted (blue open 

circles).  The overall CCN0.4-Nd correlation is high and statistically significant (r=0.79), and 

the slope of the logarithm of ship-based Nd vs. logarithm of CCN0.4 (ACICCN) is 1.39±0.10, 

with ±0.10 denoting the standard error of the slope. ACICCN slightly decreases to 1.30±0.13 

when only non-precipitating samples are considered. These values are slightly greater than 

the physical upper limit of 1.0, at which the fractional change in aerosol is linked to an 

equivalent fractional change in Nd. It is plausible that the calculations are not robust due to 

the small number of samples. This is mainly due to the CCN counter 10-minute sampling 

cycle with constant supersaturation. We repeated the non-precipitating ACI calculation but 

using CCN0.3 instead, and found a smaller value at 0.98±0.12, which is within the expected 

physical values. It is unclear why both CCN0.4 and CCN0.3 do not yield the same ACI, 

especially when considering that both CCN measurements are strongly correlated at 0.98 with 

a logarithmic slope of 1.0. As previously mentioned, the small number of samples (Table 3), 

due to gaps in the radar dataset, might be the reason for the ACI disagreement. When 

repeating the ACI calculation using all the available samples irrespective of the radar data 

availability, the number of points increases more than 35%, and the different CCN-based 

calculations start to converge, with ACI at 0.97 and 1.18 for CCN0.3 and CCN0.4, respectively. 

Similarly, the use of CCN at 0.2 % (CCN0.2) produces an ACI =1.11±0.14. We did not report 



the CCN0.2-based ACI for non-precipitating scenes because the number of samples was small 

(less than 15) and the CCN0.2-Nd correlation was statistically insignificant. 

We further constrain the aerosol-cloud interaction metric by using the accumulation 

mode aerosol concentration (Na, diameters between 100 nm and 1.0 μm) derived from the 

UHSAS, and compute a Na-based ACI as       
        

        
. The use of Na is reasonable as the 

fraction of aerosols activated into CCN is typically high for aerosol diameters larger than 100 

nm and supersaturations higher than 0.2% [e.g. Bougiatioti et al., 2011]. One major 

advantage of using Na is that the number of samples is double that for CCN. As a consistency 

check, we show in Figure 5b the relationship between Na and CCN0.4 for all-sky observations 

during both day and night. The correlation between both aerosol quantities is high (r = 0.90) 

and the slope of the logarithm of CCN0.4 vs logarithm of Na is near 1.0 (0.97). When the Nd-

CCN analysis of Figure 5a was repeated but used Na instead of CCN (Figure 5c), the 

correlation is high (r= 0.72) and ACINa is also high at 1.00 ±0.05, the physical upper limit. 

The non-precipitating ACINa values slightly decrease to 0.93±0.07, mostly due to the effect of 

removing very low concentrations of Na and Nd. After using the slope in Figure 5b to infer 

CCN0.4 from Na, the equivalent ACICCN: 

      
        

        
 
        

        
 

     

    
    (4) 

becomes 1.03 and 0.96 for all and non-precipitating samples, respectively. 

We also repeated the previous analysis but used hourly averages to emulate the spatial 

resolution of the satellite. We compare Nd against both CCN0.4 and Na (Figure 6). As in 

Figure 5, the samples having more precipitation occurrences are associated with low 

concentrations of aerosols and Nd. The slopes are not different from their 10-min counterparts 

and overall their ACICCN and ACINa values are near 1.0. These slopes are only 10%-20% 

greater than those derived from satellite Nd and ship-based CCN0.4. 



4.3. Aerosol scattering (scatt), extinction coefficient (ext), and Nd slope 

Shinozuka et al. [2015] evaluated the use of dry aerosol scattering (scatt) and 

extinction (ext) coefficients as proxies for CCN concentrations. In their study, CCN 

concentration is assumed to be directly proportional to     
 

 with  between 0.5-0.9, 

depending on the geographical region considered. We used this relationship with MAGIC 

data to compute  and evaluate the use of ext in calculating the ACI metric. Aerosol 

hygroscopic growth can result in much larger diameters of particles and thus substantially 

alter the scattering properties. Thus, before the analysis was performed, a simple correction 

method was devised to convert the observed measurements of aerosol scattering coefficient 

made at relative humidity (RH) values near 70%, neph, to dry scattering coefficients, dry, the 

quantity that can be more directly related to aerosol number concentration. The method relies 

on a simple parameterization that relates the humidified-to-dry scattering coefficient ratio, 

neph/dry, defined as a humidification factor f(RH), to RH using the expression reported by 

Gasso et al. [2000] over the northern Atlantic for a clean marine air mass: 

              
  

   
 
     

           

The constant parameters in equation (5) can also be estimated with measurements of 

light scattering at low and high RH. Although a second nephelometer during MAGIC 

measured aerosol scattering at varying relative humidity, it did not perform as designed. With 

a very limited number of samples, we derived f(RH) when at least one instrument measured at 

RH <45% and we found a parameterization,               
  

   
 
     

, which is similar 

to and partially confirms equation (5). 



 Even though it is not possible to fully evaluate how well equation (5) represents the 

conditions during MAGIC, we can test whether the corrected dry is consistent with Mie 

calculations for a specific aerosol species. For this purpose, we used dry aerosol size 

distributions obtained from the UHSAS, and assumed a refractive index of ammonium sulfate 

at 1.53+0.0i [Toon et al., 1976], a value similar to that for sodium chloride (two dominant 

aerosol species in the marine boundary layer). Given that UHSAS only derives distributions 

for particles with optical diameters less than 1 m, we only used nephelometer observations 

when the instrument operated with a 1-m cut-off. 

Figure 7 shows the time series of scattering coefficients for a specific California-

Hawaii transect. Green circles are the uncorrected nephelometer data at 550 nm, the corrected 

dry is in red, and the Mie-calculated scatt (based on UHSAS data) is in black. The agreement 

between dry and the Mie-calculated values is remarkable, lending support to the use of the 

simple humidification factor. The figure also shows the magnitude of changes due to RH. At 

times, nephelometer data are two times greater than the corrected dry. The linear correlation 

coefficient of the Mie-calculated dry scattering coefficient and the uncorrected scatt is 0.86, 

while the bias is 2.87 (45%), with a RMSD of 4.95 Mm
-1

 (79% relative to the mean). In

contrast, the corrected scatt (dry) is on average only 0.39 Mm
-1

 (11%) greater than the value

of scatt calculated from the UHSAS, with a linear correlation coefficient of 0.91, and a 

RMSD of 1.44. Because of the good agreement between the corrected dry and scatt, in the 

following analysis we will only make use of dry. 

Next, we compared 10-min averaged dry with CCN0.4 for dry greater than 0.1 Mm
-1

to remove samples more affected by instrument noise. As in Shinozuka et al. [2015], the slope 

calculation between the logarithms of dry and CCN is justified by the high correlation 

coefficient (0.8) in Figure 8a. We adopted a dry fractional error of 25% (coefficient of 



variation) for computing the York fit. This error is more than double that assumed by 

Shinozuka et al. [2015], and highlights the inherent challenges of ship deployments. We 

found a slope for the linear fit of the logarithms of CCN0.4 and dry to be = 0.82 ± 0.01, or 

equivalent to            
    . Since the aerosol extinction coefficient (ext) is the physical 

quantity that can be more closely related to other aerosol remote sensing measurements, we 

repeated the analysis depicted in Figure 8a but for ext. We first computed ext by combining 

dry and dry aerosol absorption coefficient (abs) measured by the PSAP and previously 

converted to 550-nm absorption (Section 2). Figure 8b shows the CCN-ext relationship, 

which closely resembles that in Figure 8a, reflecting the weak aerosol absorption measured 

during MAGIC. The correlation of the logarithms of these two quantities is high (r = 0.84) 

and the slope slightly increases to = 0.87 ± 0.01 because, in logarithmic scale, inclusion of 

small abs tends to mainly affect the lower left region of the CCN-ext scatterplot by shifting it 

to the right. This factor = 0.87 is similar to that found for ground-based ARM observations 

over the Azores/Graciosa Island in Shinozuka et al. [2015] of 0.83 (weight-averaged by 

frequency of occurrence). This agreement is likely due to the similarities of these two marine 

boundary layer regimes in terms of their aerosol composition. 

Having a way to relate ext to CCN, we utilize ext to derive      
        

          
. We 

first show in Figure 9 the Nd-ext relationship for 10-min averaged data. The logarithmic-scale 

linear correlation coefficient is 0.73 and the ext-CCN slope (ACI) is 1.00 ± 0.07 and 0.95 ± 

0.08 for all and for precipitating samples, respectively. Using the exponent , we can obtain 

the conversion from ACI to ACICCN as,       
        

          
 
         

        
 

    

 
. This yields 

equivalent ACICCN of 1.15 and 1.10 for all and non-precipitating samples, respectively. 



5. Discussion

5.1. Boundary layer deepening, decoupling, and aerosol vertical structure 

Analysis of ACICCN variability along the westward transects using GOES Nd and ship-

based CCN during the full MAGIC deployment in P15 showed that ACI values calculated 

from CCN concentration tends to decrease westward, as LWP decreases [Painemal et al., 

2016] and the boundary layer deepens and becomes less turbulently coupled. To confirm this 

finding, we computed ACINa using non-precipitating ship-based Nd and Na for two groups 

with mean cloud base height less than and greater than the mean value of 835 m. In 

agreement with P15, it was found that the samples with shallower cloud bases (mean base at 

577 m) have an overall linear correlation coefficient of 0.81 (logarithmic scale) and 

ACINa=1.09 (equivalent to ACICCN = 1.12), whereas the correlation and ACINa decreases to 

0.43 and 0.58 (equivalent to ACICCN = 0.60), respectively, for the deeper sub-cloud layer 

group (mean base at 1207 m). On average, the shallow sub-cloud layer (high ACI) is also 

well-coupled; the cloud base height and lifting condensation level difference is 146 m, 432 m 

less than that for the deeper layer. These findings lead us to hypothesize that the boundary 

layer depth and the level of turbulent coupling determine how representative aerosol surface 

measurements are of those expected near the cloud base, where CCN activation typically 

occurs. 

To evaluate this hypothesis, we use vertically resolved HSRL measurements of 

particle backscatter cross section per unit volume (back). Although in principle, HSRL can 

provide aerosol extinction retrievals, these measurements are prone to several uncertainties 

(section 2). Given the relatively homogeneous ext to back ratio (lidar ratio) in marine 

environments [e.g. Burton et al., 2012], back should capture the variability in ext. In terms of 

near-surface observation, ext, derived from the nephelometer and PSAP operated at the 10-

m cutoff diameter mode, is a measurement physically comparable to that retrieved from 



HSRL. Unfortunately, the nephelometer did not measure at the ambient relative humidity, 

and thus further corrections would be necessary to account for the disparity between 

instrument and ambient humidity. The adequacy of such a correction is not possible to test, 

for instance, with Mie calculations, because the UHSAS did not determine the aerosol size 

distribution, necessary for scattering computations, for diameters larger than 1 m. We 

circumvent the limitations in the surface measurements by investigating the role of the 

aerosol vertical structure in the context of the HSRL back. That is, the co-variability in the 

sub-cloud layer backscatter cross section as a function of height back (back(z)) is analyzed 

with respect to the lowest HSRL measurement at 150 m (back(150m)), which is in turn used 

as a surrogate for near-surface aerosol observation. We first show in Figure 10a the mean 

HSRL back(z) profiles for the shallow and deep boundary layers, previously defined as those 

samples with cloud bases lower and higher than 835 m, respectively. These profiles were 

created after removing HSRL retrievals above the cloud base. The mean back for the shallow 

composite (black) is greater than its deep composite counterpart (red) over the comparable 

height range, consistent with greater anthropogenic contributions near the coast, where the 

boundary layer is also shallower (P15). Next, we correlate back(z) with back(150m), and 

calculate its logarithmic slope,                               , using an iteratively 

reweighted least square fit with a bi-square weighting function to reduce the effect of outliers 

[Street et al., 1988]. As expected, back(z) correlates well with back(150m) for both shallow 

and deep boundary layers at elevations below 450 m, with values of the linear correlation 

coefficient greater than 0.9 (Figure 10b, solid black and red, respectively).  The relationship 

becomes more scattered and the correlation decreases to below 0.5 for heights above 900 m, 

near the cloud base in the deep boundary layer case. On the other hand, the slope is near unity 

below 400 m for both groups (diamonds), although for the shallow-layer case, values near 

unity are observed throughout the sub-cloud layer. In contrast, the slope starts to decrease in 



the deep boundary layer above 450 m, reaching a minimum near 0.4 at 900 m. These findings 

demonstrate that in deep boundary layers, the use of surface aerosol observations would tend 

to yield ACI indices and correlation coefficients less than those calculated using near cloud 

base aerosol measurements. 

5.2. Ship-based ACI calculations 

One limitation of this study is the use of Nd computed under the assumption of a near-

adiabatic cloud model. We partially validated this assumption by showing a strong linearity 

between adiabatic and measured LWP. On the other hand, since we are mostly interested in 

the slope of Nd with respect to a given aerosol property rather than Nd absolute values, we 

argue that these slopes reduce the impact of Nd uncertainties and assumptions about the cloud 

microphysical structure, whereas the strong linear correlations support the computation of 

slopes. A second aspect is that we did not stratify our calculation as a function of LWP as in 

previous studies [e.g. Painemal and Zuidema, 2013; McComiskey and Feingold, 2012]. 

Although accounting for LWP is essential for radiative transfer computations of the indirect 

effect, Nd is weakly correlated with LWP (r =-0.2) and at least from the Nd-aerosol slope 

calculation viewpoint, LWP stratification is unnecessary. 

The 10-minute average ACI calculations using CCN, Na, ext (after applying the 

regressions) are summarized in Table 3. As previously mentioned, all the aerosol 

observations yield ACICCN near 1.0, although CCN0.4 and CCN0.3 yield slightly greater values. 

Given the anthropogenic contribution from particles with diameters less than 70 nm in the 

CCN measurements during MAGIC, along with the reduced number of collocated samples, 

the CCN-based ACI calculation might be less robust. On the other hand, Na
0.97

 and ext
0.85

produce very similar ACICCN values, because particle sizes larger than 100-200 nm typically 

dominated the light scattering during MAGIC [Seinfeld and Pandis, 2006]. 



The ship-based results in this study are comparable to those derived over the 

Southeast Pacific during the 2008 VOCALS Regional Experiment, where ACI values derived 

from in-situ microphysical airborne probes ranged between 0.71 and 0.92, [Painemal and 

Zuidema 2013, Zheng et al. 2011]. McComiskey and Feingold [2008] reported an ACI = 0.85 

using measurements in Twohy et al. [2005] during the DYCOMS-II campaign over the 

northeast Pacific. In addition, averaged flight data during MASE reported by Daum et al. 

[2007, their Figure 14a] yield and ACI ≈ 1.07. Overall, aircraft studies over the eastern 

Pacific yield an ACI range of 0.71-1.07, which is in close agreement with ACI values 

calculated from MAGIC data. 

5.3. Satellite and ship-based observations 

The observational disagreement between aerosol-cloud interaction calculations 

derived from different datasets has been in part associated with the dissimilar spatio-temporal 

scales inherent in each platform [e.g. McComiskey and Feingold, 2012].  Since data 

averaging leads to variance reduction, it has been hypothesized that the large satellite fields-

of-view explain in part the lesser satellite ACI values and weaker correlations between 

satellite retrievals of aerosols and cloud microphysics.  Nevertheless, our analysis shows that 

an ACICCN value of 0.88-0.92, based on combined satellite Nd and ship-based CCN and Na, is 

only slightly less than the hourly-averaged ship-based ACICCN of ~1.01-1.2 (Table 4). 

Moreover, ship-based 10-minute and hourly calculations also agree well. These results 

suggest that for the overcast clouds having little precipitation reported in this study, the 

spatial variability is small, and thus satellite data yield results comparable to those from in-

situ observations. Based on these results, we speculate that an important and partially ignored 

source of disagreement between satellite-based and in-situ calculations is the use of satellite 

aerosol optical depth AOD as a CCN concentration proxy. AOD is problematic, as it is a 



vertically integrated quantity and may not fully represent the aerosol variability in the 

boundary layer. A second issue is that a few large particles can dominate AOD while 

contributing little to CCN concentration. In addition, several artifacts can modulate the AOD-

cloud co-variability, having the potential to produce a spurious aerosol-cloud interaction 

signal (see discussion in P15). Even if AOD is used as a substitute for CCN, the non-linear 

relationship       
 , with < 1, [e.g. Andreae, 2009] would imply: 

        

         
 

        

         
. 

6. Conclusions

The MAGIC deployment provided an unprecedented dataset of aerosol and cloud 

properties over the northeast Pacific boundary layer. We used remotely sensed MAGIC 

retrievals of cloud properties to compute Nd and quantify its co-variability with CCN and 

aerosol concentrations. We found that the value of an aerosol-cloud interaction index defined 

by                        , with  denoting CCN concentration, Na, or ext, is high and 

is near the upper physical limit of 1.0. The results are robust, whether using either 10-minute 

or hourly averaged data. In addition, a reduction of up to 10% in ACI after removing 

precipitating samples is associated with the effect of filtering low CCN concentration and Nd 

in the regression computation. The high ACI and correlations derived here exceed those from 

a similar ARM deployment at Point Reyes on the California coast [McComiskey et al., 2009], 

while the MAGIC Nd are smaller and more physical than those reported in Lim et al. [2016]. 

Unlike the aforementioned studies, the use of a narrow field-of-view sun-photometer and 

improved LWP retrievals from a three-channel MWR are likely the main reason for the 

aerosol-cloud consistency reported here [Lim et al., 2016]. 



A remarkable finding is the agreement between ACI values derived using the satellite 

Nd and that determined from only ship-based values. While this result was prefigured in the 

good agreement between satellite and ship-based cloud retrievals, it is surprising that despite 

the different spatial samplings and retrieval algorithms, the satellite cloud microphysics 

reproduce the ship-based ACI, which is in turn consistent with aircraft measurements taken in 

other marine boundary layer regimes. This result is encouraging and provides evidence that in 

overcast scenes with favorable satellite viewing angles, satellite cloud products provide 

valuable microphysical information, especially when in-situ dataset are unavailable. 

We note that due to the limitations of MAGIC ship-based deployments, this study is 

primarily based on the relationship between Nd and CCN for fixed values of supersaturation. 

A more rigorous study should account for the updraft magnitude and the associated 

supersaturation for each sampling for a better ACI quantification. Since we are only utilizing 

overcast samples with LWP greater than 15 g/m
2
 (section 3), it is likely that the analysis is

inadvertently biased toward measurements with stronger updrafts and supersaturations, for 

which CCN03 and CCN0.4 might be representative of the activated aerosols. Other factors 

unaccounted for in our study are the role of the cloud top entrainment in modifying Nd, 

precipitation, and the cloud vertical structure, especially when this departs from the 

assumptions that allows for Nd calculations using equations 2 and 3. 

The use of vertically-resolved aerosol properties from a HSRL open new 

opportunities for the investigation of the aerosol indirect effect, in principle, enabling better 

estimates than those based on surface observations only, which suffer from limitations in 

deep and decoupled marine boundary layers. Ghan and Collins [2004] and Ghan et al. [2006] 

devised a method to derive CCN profiles using the relationship between surface CCN and 

lidar backscatter cross-section, combined with knowledge of the humidification factor. Our 

analysis supports the applicability of the Ghan and Collins method for surface-based aerosol 



extinction. To further extend the method for use with HSRL, it would be desirable to have 

accurate aerosol extinction retrievals, vertical profiles of CCN, relative humidity and 

information about the aerosol species that can be used to select a proper humidification factor 

to help account for aerosol hygroscopic growth in the HSRL measurements. 
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Tables 

Table 1: Instruments and associated measurements/retrievals. 

Instrument Measurements/retrievals 

CCN particle counter CCN concentrations at different supersaturations from 0 to 

0.6% 

Cimel sunphotometer Cloud optical depth (), effective radius (re), liquid water 

path (LWP), and cloud droplet number concentration (Nd, 

equation 2) 

Ultra-High sensitivity aerosol 

spectrometer (UHSAS) 

Aerosol size distribution, accumulation mode dry aerosol 

concentration (Na, diameters between 0.1-1.0 μm) 

Nephelometer Aerosol scattering coefficient at wavelengths 450, 550, and 

700 nm. Instrument alternates measurements for particles 

with aerodynamic diameters less than 1m and less than 10 

m. 

Particle Soot absorption 

photometer (PSAP) 
Aerosol absorption coefficient (abs) at wavelengths 470, 

522, and 660 nm. Instrument alternates measurements for 

particles with aerodynamic diameters less than 1m and 

less than 10 m. 

3-channel microwave 

radiometer 

Liquid water path and Nd (equation 2) 

K-band radar Cloud layers detection, cloud top height, and precipitation 

flag 

University of Wisconsin’s high 

spectral resolution lidar 

(HSRL) 

Cloud base height detection and aerosol backscatter cross-

section (back) 

Ceilometer Cloud base height detection and cloud frequency of 

occurrence 

GOES-15 satellite Imager Daytime re and . Nd derived from equation (3) 

MODIS (Aqua and Terra 

satellites) 
Daytime re and . Nd derived from equation (3) 



Table 2: Linear correlation mean bias, and root-mean-square deviation between MODIS 

(GOES-15) retrieved values and ship-based observations. Correlations in bold are statistically 

significant at 99% confidence leve according to a Student’s t test. 

Quantity Linear correlation 

coefficient r 

Mean bias Root-mean-

square 

deviation 

RMSD 

LWP (g/m
2
) 0.96 (0.88) 12, 13.4% (12.7, 16.8%) 18.9 (26.4) 

 0.96 (0.83) -1.46, -14% (-2.3, (-

20.7%) 

2.03 (3.26) 

Nd (cm
-3

) -0.29 (0.78) -154.3, -61% (-101, -56%) 261.3 (184.5) 



Table 3: ACI determined using 10-minute averaged ship-based Nd and different aerosol 

properties . Parenthetical values correspond to statistics after removing samples with 

precipitation frequency >0.1. All correlations are statistically significant at 99% confidence 

level according to a Student’s t test. 

Aerosol property ACICCN Correlation (log 

scale) 

Number of matched 

samples 

CCN0.4 1.39 (1.3) 0.79 (0.76) 54 (36) 

CCN0.3 0.96 (0.98) 0.65 (0.65) 35 (28) 

Na
0.97

1.04 (0.95) 0.72 (0.66) 104 (85) 

ext
0.87 1.15 (1.1) 0.73 (0.71) 61 (48) 



Table 4: ACICCN determined using hourly averaged ship-based and satellite Nd combined with 

different aerosol measurements  Parenthetical values were estimated by combining satellite 

Nd and Na
0.97

. All correlations are statistically significant at 99% confidence level according

to a Student’s t test. 

Nd- ACICCN Correlation (log 

scale) 

Number of matched 

samples 

Hourly Nd- CCN0.4 1.2 0.77 29 

Hourly Nd -CCN0.3 1.07 0.67 28 

Hourly Nd-Na
0.97

1.01 0.78 29 

MODIS Nd- CCN0.4

(Na
0.97

)

0.79 (0.97) 0.65 (0.69) 24 (31) 

GOES-15 Nd - 

CCN0.4(Na
0.97

)

0.88 (0.92) 0.66 (0.71) 534/(626) 



Figures 

Figure 1: 10-min average MWR-determined LWP and adiabatic LWP for June and July of 

2013. Blue line is the median MWR LWP as a function of its adiabatic counterpart with bin 

widths of 15 g/m
2
. The gray dashed line denotes the 1:1 relationship.



Figure 2: Ship-based comparison between sun-photometer (sun-phot) LWP, derived from re 

and , and from MWR. Blue circles correspond to sun-photometer LWP derived from  

assuming a constant re=9 m. 



Figure 3: Scatterplot between GOES-15 (gray) and MODIS (red) satellite retrievals against 

their ship-based counterparts for (a) liquid water path (LWP) and (b) aerosol optical depth (τ), 

and (c) GOES-15 cloud drop number concentration (Nd), with the solid line denoting the 

linear fit, and the dashed line the 1:1 line. 



Figure 4: Scatterplot between CCN0.4 and satellite Nd for MODIS (red) and GOES (blue). 

ACIM and ACIG are the slopes for MODIS and GOES-15. 



Figure 5: 10-minute averaged relationships for (a) Nd and CCN0.4 (gray and red), and CCN0.3 

and Nd (blue open circles, non-precipitating samples) (b) CCN0.4, and accumulation mode 

aerosol Na, and (c) Nd vs Na. Red circles are samples with precipitation frequency of 

occurrence of more than 10%. ACI is reported for non-precipitating samples only. 



Figure 6: Hourly averaged relationship between (a) CCN0.4 and Nd (gray and red) and CCN0.3 

and Nd (open blue circles), and (b) Na and Nd. Red circles are samples with precipitation 

frequency of occurrence of more than 10% 



Figure 7: 550-nm light scattering coefficient time series during a July leg (Leg 15A, 

California-Hawaii). Green circles denote raw nephelometer measurements. Red line is the 

corrected nephelometer dry after applying the humidification factor correction. Solid black 

line is the Mie calculation derived using the UHSAS particle size distribution and refractive 

index at 1.53 +0.0i, typical of ammonium sulfate. 



Figure 8: Scatterplot between CCN0.4 and (a) dry aerosol scattering coefficient, and (b) 

extinction coefficient,  denotes the logarithmic slope (blue). 



Figure 9: Scatterplot between 10-minute averaged Nd and 550-nm ext. ACI is reported for 

non-precipitating samples only. 



Figure 10: (a) Below-cloud particle backscatter cross-section per unit volume (back) from 

HSRL. Width of shaded area denotes half standard deviation. (b) Linear correlation (solid) 

and slope (diamonds) in logarithmic scale between 150-m backscatter (back(150m)) and 

levels above (solid lines). Red and black lines are statistics derived from samples with cloud 

base below and above 835 m (deep and shallow boundary layers BL, respectively). The 

profiles extend up to the mean cloud base height. 
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